Design of antiviral drugs for bronchiolitis virus using a novel therapeutic target

Authors: Silva KHODJOYAN, Christina SIZUN, Philippe DURAND

ICSN – CNRS UPR 2301, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex
silva.khodjoyan@cnrs.fr

Respiratory syncytial virus (RSV), which is responsible for bronchiolitis and pneumonia, represents an important cause of hospitalization and mortality of young children. However, there is no vaccine nor efficient treatment against this virus. Therefore, developing new specific and cost-effective anti-RSV therapeutics would cover a real medical need. In this context, several viral cycle steps are targets for the development of antiviral drugs. Most antiviral molecules in preclinical or clinical studies are targeting the entry of the virus into the host cell. They are aiming at blocking the fusion step with the cell membrane via two surface proteins, F and G. Our approach is different as we are targeting the viral RNA polymerase responsible for the synthesis of viral mRNA during transcription and genomic RNA during replication. For this purpose, we suggest inhibiting the interaction between two RSV proteins by small molecules, i.e. the interaction between the nucleoprotein (N) and the phosphoprotein (P). This interaction is required for the formation of the viral RNA polymerase complex and essential for the viral cycle. This complex is virus specific, and there are no counterparts in non-infected cells. We have previously obtained structural data at high resolution for this interaction and identified a compound able to inhibit it. In order to identify new anti-RSV candidates, we suggest developing three complementary strategies in parallel: pharmacomodulation of the first hit, a peptidomimetic approach and de novo exploration on the target. To evaluate the capacity of a compound to inhibit the N-P interaction, we have developed and optimized an in vitro test based on the concept of fluorescence anisotropy, by the competition for the binding site on N by a fluorescent P analog. Our aim is to use this tool to screen molecular libraries and test newly synthetized molecules in order to find a lead compound.