
Structure-guided design of McI-1 inhibitors

Jana SOPKOVA-DE OLIVEIRA SANTOS ⁱ

UNICAEN, EA 4258 CERMN - FR CNRS INC3M, Caen, France

jana.sopkova@unicaen.fr

Protein-protein interactions are attractive targets because they control numerous cellular processes. In oncology, apoptosis regulating Bcl-2 family proteins are of particular interest. Bcl-2 proteins are crucial regulators of the intrinsic mitochondrial pathway of apoptosis and comprise both pro-apoptotic and anti-apoptotic proteins.¹ Apoptotic cell death is controlled *via* PPIs between the anti-apoptotic proteins hydrophobic groove and the pro-apoptotic proteins BH3 domain. Mcl-1 (an anti-apoptotic Bcl-2 member) is a key regulator of cancer cell survival and a known resistance factor to Bcl-2/Bcl-x_L pharmacological inhibitors making it an attractive therapeutic target. As interaction among Bcl-2 family proteins occurs through α -helices, our laboratory has developed a new family of compounds able to mimic α -helix side chain distribution (abiotic foldamers) using as structural chemical units pyridine and/or phenyl.² The designed and synthesized oligopyridines were evaluated by their capacity to inhibit Mcl-1 in live cells and to sensitize ovarian carcinoma cells to Bcl-x_L-targeting strategies and Pyridoclax was emerged a lead.^{3,4} Then, a combined experimental and theoretical approach was applied to investigate the binding mode of Pyridoclax to Mcl-1 and to guide the future pharmacomodulations.⁵

⁵ A. Bourafai-Aziez, J. Mol. Dyn. Struct., **2019**, 29:1-17.

¹ S. Cory, S. J. M. Adams, Nat. Rev. Cancer 2002, 2(9), 647-656.

² J. Sopková-de Oliveira Santos et al. J. Chem. Inf. Model. 2012, 52, 429-439.

³ C. Gloaguen *et al.*, *J. Med. Chem.*, **2015**, 58(4), 1644-1668.

⁴ L. Poulain *et al.* Mcl-1 modulating compounds for cancer treatment. EP14305309.8. 2014.