Synthesis and Evaluation of Small Molecule Inhibitors ofInterleukin (IL)-15: Towards IL-15 vs IL-2 Selectivity

Authors: Jimmy SMADJA^{i,ii} ; Laurence ARZELⁱⁱ ; Agnès QUÉMÉNERⁱ ; ConstantinVITREⁱⁱ ; Monique MATHÉ-ALLAINMATⁱⁱ ; Didier DUBREUILⁱⁱ ; Erwan MORTIER^{i,}

i. CRCINA – UMR 1232 INSERM / CNRS ERL 6001, IRS-Université de Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes cedex 1,

ii. CEISAM, UMR 6230 CNRS, UFR Sciences et Techniques, Bât.33, 2 Chemin de la Houssinière, BP 92208 44322 Nantes Cedex 3

Jimmy.Smadja@univ-nantes.fr

Interleukin (IL)-15, is a pleiotropic cytokine structurally close to IL-2, both sharing the IL-2R β and yc receptor (R) subunits. IL-15 plays important roles in innate and adaptative immunity, supporting the activation and proliferation of NK, NK-T, and CD8+ T cells. ^{1,2}

In case of dysregulation, high levels of IL-15 have been detected, leading to abnormal immune responses and autoimmune or inflammatory diseases such as polyarthritis rheumatoid or psoriasis³. Hence, our goal is to synthesize small molecule inhibitors that bind specifically to IL-15 on the IL-2R β interface.

Our presentation will describe two new families of IL-15 inhibitors (Figure). Taking advantage of our previous work IL-15 4 , extending modifications were done on our first series called IBI 5 . On a second time, we applied a similar docking-based virtual screening of compounds libraries on a refined pharmacophore-based on IL-15 specific residues identified on the binding site of IL-15 with IL- $2R\beta$ giving so our second family named IBIS. These series of compounds were evaluated for their capacity to inhibit the binding to IL-15 to its cognate receptor, as well as the down-stream signaling IL-15-dependent cells and their proliferation.

Figure: Structure-Activity Relationship Study. IBI Family: Modulations of *N*-triazole (orange), *N*-Phthalazinone (blue), Linker and Aromatic (yellow) moieties. IBIS Family: Modulations of Aromatic (yellow), Heterocyclic (blue) and Thiophene (orange) moieties.

⁵ J. Smadja & al, *Bioorg. Med. Chem.* **2021**, 39, 116161.

¹ KH. Grabstein & al, Science. **1994**, 264, 965–968.

² JD Burton & al, *Proc Natl. Acad. Sci USA.* **1994**, 91, 4935–4939.

³ TA. Waldmann & al, *J Exp Med.* **2020**, 217.

⁴ A. Quéméner & al, *J. Med. Chem.* **2017**, 60, 14, 6249–6272.